MOUSE BREEDING 101
Guidelines, Tips, and Suggestions

4 Rs
- Replacement
- Reduction
- Refinement
- Responsibility

Before You Started
- Think clearly what you want to do, and ... how many you need!
- Know the basic information of the background strain
 - Gestational range
 - Average litter size
 - Maternity
 - Genetic predisposition to disease
- Determine the breeding strategy
Reproduction performance of common strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Litter size</th>
<th>Gestation</th>
<th>Maternity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-1</td>
<td>8 +</td>
<td>19</td>
<td>Good</td>
</tr>
<tr>
<td>Hybrid</td>
<td>8 +</td>
<td>19</td>
<td>Good</td>
</tr>
<tr>
<td>C57BL/6</td>
<td>6 +</td>
<td>19-20</td>
<td>Poor</td>
</tr>
<tr>
<td>FVB/N</td>
<td>7 +</td>
<td>18-20</td>
<td>Good</td>
</tr>
<tr>
<td>BALB/c</td>
<td>4 +</td>
<td>20-21</td>
<td>Good</td>
</tr>
</tbody>
</table>

Basic knowledge of breeder selection

- **Sexual maturation**
 - Male: 6 weeks; Female: 4-5 weeks
 - Best breeding start: 7-8 weeks
 - Somewhat variable by age and size
 - Post-partum estrus (use or not use?)
 - Gestation: 17 to 21 days
 - Wean @ 17-28 days
 - Duke standard is 21 days
 - May need later if problem animals
 - IACUC approval for late weaning age: > 21 days
 - Productive breeding life: 8 months

- **Housing males**
 - Fighting:
 - Do not pool more than 2 if they did not live together before weaning
 - Territory:
 - Always put females into male cage
 - Dominant status:
 - Do not put more than 3 females with 1 male
Influence of Genetic Background on Breeding Performance

- Behavior
- Hybrid vigor
- Birth defects

Physiological Effects

- Bruce Effect:
 - A form of pregnancy disruption in which exposure of a female to an unknown male results in pre- or post-implantation failure. Pregnancy disruption may occur at any time from conception to 17 days postmating, depending on the species and experimental conditions.

- Whitten Effect:
 - Mouse pheromone-laden urine synchronizes the estrus cycle among unisexualy grouped females.

- Vendenbergh Effect:
 - Early induction of the first estrous cycle in prepubertal female mice due to exposure to the pheromone-laden urine of a sexually mature (dominant) male mouse.

Breeding Strategy

- Most strains (NIH recommendation):
 - 1:1 breeding scheme
 - Pros:
 - Prevent overcrowding
 - Easy to identify problematic breeders
 - Cons:
 - May cannibalize pups

 - 1:2 (poor breeders such as B6, 129)
 - Pros:
 - Increase litter size
 - Less cannibalization
 - Cons:
 - Miss post-partum estrus
 - Trampling of newborn pups
Retirement
- **Male**: around 1 year
- **Female**: after 6 litters or around 1 year

Cannibalization
- **Reasons**:
 - First litter
 - Stillbirth:
 - phenotypes of transgenic mice
 - too young
 - undersized mom
 - Poor maternity: B6, 129, and some of the transgenic lines (non-healthy mom)
 - Environmental change
- **Prevention**
 - Nesting material
 - High-fat diet for B6 (peanut butter? dog food?)
 - Do not disturb 2 days prior to and 3 days after delivery
 - C-section: do not perform earlier than 24 hrs before the birth date

Non-genetic Factors That Influence Breeding Performance
- **Environment**
 - Temperature
 - Light intensity and light cycle
 - Noise and vibrations (construction, equipment)
 - Air pressure
 - Odors (toxic fumes, perfumes)
- **Handling consistency**
 - Over handling-leave pregnant mothers alone
- **Nutrition**
- **Health status**
Timed-mating

- Estrus cycle: 4-5 days
 - Identify female mice in estrus by:
 - Gross inspection
 - Vaginal smear
 - At any given time, about 20% of the females in the mouse overall population are in estrus
 - Grouped females will usually synchronize by the 3rd cycle (15 days)
 - Not every female will show a plug (60+ %)
 - ‘Plug’ ≠ Pregnant
 - The best choice is use ‘proven studs’
 - Remove both plugged and unplugged females
 - Unplugged: May go to 1:1 mating

Sexing / Genotyping Animals

- Day 0:
 - Sexing:
 - black/agouti-black dot of scrotum
 - albino: anal-genital distance, nipple
- Day 7:
 - Sexing: Nipple
- Day < 12: Genotyping if toe clipping
- Day < 21: Genotyping for tail snips
- Day 17 – 28:
 - Wean
 - Separate sexes
 - Euthanize undesirable genotypes

Maintain a line

- Requires (min) 4 males and 10 females
- Replacement
 - When last generation reaches 6 month old, set up at least 2 males and 4 females (1:2) for breeding
 - Keep only 2 males and 5 females from each cage. Terminate the rest.
- Cryopreservation is an option
 - Minimized the maintenance cages
Cryopreservation

- Protects against:
 - Contamination
 - Disease
 - Genetic drift
 - Disaster
 - Breeding cessation
 - Loss of copy number
 - Lower cost (than keeping breeding animals over a long time)

Cryopreservation

- Embryos, Sperm
- Superovulate ten 3-week-old females
 - Outbred/ FVB: ~100-150 morula, ~85-95% recovery (live pups)
 - Inbred: ~80-100 morula
 ~70-80% recovery (live pups)
- Minimize live animal maintenance cages
- Synchronize embryo stages

Special notices for breeding a transgenic line

- Make sure you have more than 1 line
- Transgenic founder breeding
 - Mosaic (positive F1 <30%)
 - Multiple integration sites (positive F1>80%)
 - Might diverge into more than one distinct line
- Genetic background interference
Inbreeding Stabilization

- Three family rotations (within 1 line)
 - Group your breeding cages into three families
 - AF female-BM male, BF female-CM male, CF female-AM male
 - Round 1 Selections: AF-BM, BF-CM, CF-AM
 - Round 2 Selections: AF-CM, BF-AM, CF-BM
 - Round 3 Selections: AF-AM, BF-BM, CF-CM

- Keeping the same pair together and always breeding from those offspring will encourage genetic drift and a new subline after 40 generations!

Data Collection and Record keeping

- Critical for successful colony management!
- Collect breeding statistics
 - Birth dates for every litter
 - Interval between litters
 - Litter size
 - Number of mice that wean (born:wean ratio)
 - Genotype shift
 - Gender frequencies
- Pedigree records
 - Who is related to whom?

Non-Productive Breeder Criteria

- No litter produced
 - 40 days from date of first mating
- No new litters
 - 40 days from last born date
- No weaned pups
 - 2-3 litters with none weaned
The ‘cage density’ policy reflects federal regulations, not just Duke’s requirement! These are not new regulations, just ones our community has had a difficult time with.

Requirements:

- 5 adults / cage (if all are ~ 25 grams)
- 4 adults / cage (if any > 45 grams)
- 3 adults + 5 pups / cage
- 2 adults + 10 pups / cage
- 1 adult + >10 pups / cage
- No litters >14 days apart in age
- Wean pups at 21 days unless IACUC approval for delayed weaning has been received
- Use “special husbandry” DLAR card if special husbandry is required.

OVERCROWDING IS AN ANIMAL WELFARE CONCERN!

ON-GOING OVERCROWDING MUST BE REPORTED TO THE NIH.

- Duke uses ‘5 incidents in 3 month / running average’ to define overcrowding

DLAR IS REQUIRED TO REPORT TO OAWA FIVE OR MORE OVERCROWDING INCIDENTS IN A 3 MONTH PERIOD.

Most repeat overcrowded notices are generated from:

- **PROBLEM:** Harem breeding resulting in 3 adults with > 5 pups or pups >14 days apart in age.
 SOLUTION: Remove dams once pregnant and single house or house with 1 male. Do not take advantage of post-partum estrus if approved for delayed weaning.

- **PROBLEM:** Pups not weaned at 21 days = too many adults in cage on day 22
 SOLUTION: Track breeding records accurately and wean at 21 days.

- **PROBLEM:** Two dams give birth and there are more than 10 pups (over 7 days of age) between both litters
 SOLUTION: Single house dams once pregnant to avoid confusion when separating litters.
Tips for Colony Management

- Mate mice early, between 7-12 weeks of age
- Establish/collection breeding statistics
- Replace breeders on a rotation (weekly, monthly)
- Have young breeders available (plan ahead)
- Keep good records, evaluate data regularly

Tips for Colony Management

- Observe your colony AT LEAST once a week (good records are necessary if you choose this option).
 - If overcrowding notice is placed on cage …
 - … you have 24 hours to reply … then it will be separated and you will be charged for the service.
- Daily observation is necessary for husbandry / medical
- Record and investigate deviations immediately
- Keep older generations available (until the youngsters are proven breeders!)
- Choose breeders carefully

Tips for Colony Management

- When genetic shifting genetic occurs, fertility changes may occur.
- Move a single female to a cage by herself within 7 days of parturition, especially if approved for delayed weaning so that the post-partum estrus IS NOT used!
- Harem breeding is ok, BUT avoid overcrowded cages!
- Strains that have >5 pups/litter should have dams singly housed (or housed with a male) to prevent 2 adults + >10 pups.
• You can use any system of numbers you choose
• Below are two different numbering systems:
Breeding Facts and Needs:
- You need 15 male newborns every 2 weeks for at least 3 months
- Mice are in CD-1 background, synchronized
- CD1 will have at least 8 pups/litter, so you’ll probably get 4 males/litter
- You need at least 4 pregnant moms every 2 weeks ... so

Example 1
- Week 1, set up 3 breeding cage (1:2)
- Week 3, set up 3 breeding cage (1:2)
- Week 4, first 6 females due - pups for exp.
 - identify non-preg. females, change to 1:1
- Week 6, second 6 females due - pups for exp.
 - identify non-preg. females, change to 1:1
- Week 7, wean pups for exp.
 - Set-up new breeders for next round of pups
- Week 9, wean pups for exp.
 - Set-up new breeders for next round of pups

Example 1
- Replace the females that didn’t get pregnant after week 4 and week 6
- Replace the male if the replaced females didn’t get pregnant
- Record breeding data
- Stop breeding by pooling females together if only temporarily (such as holiday season)
- Do not euthanize good breeding pairs without thinking!!! Once they are gone, that is it ...